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Resonances of a coated sphere
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In the scattering of a plane wave by a perfectly conducting sphere coated with a dieletric layer,
we show that the layer thickness plays an important role in the resonance position and the cross
section profile. To do this, we developed a method to calculate the resonance position and width.
A physical interpretation of these resonant modes is given based on the analogy between optics and

quantum mechanics.
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I. INTRODUCTION

In recent years light scattering by micrometer sized
particles has been a subject of research in a wide range
of fields. For instance, on light scattering by micrometer
droplets many quantum optical effects, such as stimu-
lated Raman and Brillouin scattering and lasing, were
observed [1-3]. These nonlinear optical processes oc-
cur in regions where the electromagnetic field strength
is high. In Mie scattering the light is scattered by a
dielectric sphere [4]. In resonant conditions the field is
strong in regions near and inside the spherical surface
[5,6]. Those experimental results show that micrometer
dielectric spheres can be good optical resonant cavities.
An interesting variation of the Mie scattering is the Aden
and Kerker scattering (AK). In AK scattering an inci-
dent plane wave with vector wave k is scattered by a
dielectric spherical core coated with a dielectric spheri-
cal layer [7,8]. In the present work, we will study the
AK scattering in the particular situation in which the
light is scattered by a perfectly metallic core coated with
a transparent layer [9-12] with real vacuum relative re-
fractive index N > 1. As in Mie scattering, as well as
in AK scattering, the electromagnetic fields are given by
infinite partial wave expansion [7,8]. The AK scattering
resonant modes are related to the complex poles of this
partial wave expansion. These poles are the solutions of
the following transcendental equation:

Ne;Ff () = Vi () [ (8) (1.1)

Here ln’(Cél)) denotes the Ricatti-Hankel function log-
arithmic derivative with respect to the argument. The
index j is the polarization index so that the symbol ¢;
assumes the values €; = 1 (j = 1 perpendicular polariza-
tion or magnetic waves M) and €z = 1/N? (j = 2 parallel
polarization or electric waves E). We define the size pa-
rameters § = kb (b being the outer radius), « = N3, and
v = Nka (b = pa, a being the core radius). Besides, for
the fth resonant multipole the functions Flj and Vlj are
written as
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j _ | Yp(a@)xe(v) — xp(a)e(y), j=1
rtte = { Y D, 12a 0

j _ | e(a)xe(y) — xe(a)pe(v), j=1
Vilenm) = { bel@xs(r) — xelaby(r), 5=2, 3

where 9 and x are the Ricatti-Bessel and the Ricatti-
Neumann functions, respectively. = The solutions of
Eq. (1.1) for a given multipole £ are complex and can
be written in the form, 8 = 8 — iw, where 3 and w are
the resonance position and resonance width, respectively.

II. PHYSICAL INTERPRETATION OF AK
RESONANCES

In the case of the micrometer coated spheres, opti-
cal resonances are related to high £ values, so that these
resonance calculations need suitable numerical compu-
tational efforts [13-16]. The physical interpretation of
these resonances can be understood with the help of the
well-known analogy of optics and quantum mechanical
scattering. It is well known that the Hertz-Debye elec-
tromagnetic scalar potentials [4,8] can be interpreted as
solutions of a Schrédinger-like equation subject to an ef-
fective potential Uess [6,17-19]. In the present case, for
the £th partial wave and an incident “particle” having en-
ergy k2, the effective potential Uess (in units such that
kA = 2m = 1) takes the form of an attractive square well
of depth k?(N? — 1) (see Fig. 1) plus the centrifugal
potential (A2/r2) with A = £ + 1/2 (Langer semiclassi-
cal modification) representing the angular momentum.
In this approach, resonances can be interpreted as quasi-
bound states of the light [6,17-19]. In the geometrical op-
tics approximation the strong fields can occur in regions
delimited by two concentric aplanatic spheres r = b/N
and r = Nb [6,20], so that in resonance studies the ratio
b/(aN) plays an important role. For instance, if the core
radius a is less than the internal aplanatic sphere radius
b/N, the AK scattering becomes very similar to Mie scat-
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FIG. 1. Effective potential Uess for a spherical metallic
core of radius a coated by a transparent spherical dielectric
layer of radius b and having the vacuum relative refractive
index N > 1. Within this framework, resonances are in-
terpreted as quasibound states of the light. In (a) as the
b/a > N, the metallic core volume is smaller than the layer
volume so that the AK resonances are very similar to Mie res-
onances. On the other hand, in (b) as the b/a < N, reflections
on the metallic core surface are not negligible and the A region
characterizes the transition between the Mie-like resonances
(v < A) to the Fabry-Pérot-like (v > A) AK resonances.

tering, so that the AK resonant spectrum behaves like
the resonant Mie spectrum [see Fig. 1(a)] and the size
parameters satisfy the inequality v < 8 < A < . Other-
wise, if @ > b/N there are two different possibilities to be
analyzed. The first situation occurs for impact param-
eters such that reflections on metallic core surface start
becoming important. This situation is related to size pa-
rameters that satisfy the inequality 8 < v < A < «a.
In the other situation, when 8 < A < v < « the layer
thickness is very thin, so that the resonant modes can be
interpreted as surface waves that travel around a thin di-
electric spherical layer. In this case the AK scattering re-
sembles the scattering by a thin film [16,21] and the reso-
nances are qualitatively equivalent to Fabry-Pérot cavity
normal modes [see Fig. 1(b)]. In the case a > bN and a
given A, we denote the transition region A [see Fig. 1(b)]
as being the resonances for which |y — A] ~ O(AY/3).
This region is very singular. For resonances in the A
transition region, the boundary conditions at the spher-
ical metallic core play a central role, as we will see soon.

III. ASYMPTOTIC FORMULAS
TO AK RESONANCES

For Mie-like and Fabry-Pérot-like resonances, we can
apply the semiclassical Bohr-Sommerfeld quantization
rule. In this approximation the resonance positions are
polarization independent and are determined by

T. M. BAMBINO AND L. G. GUIMARAES 33

/bdr, IN?K2, = (A7) = (n+ 1/2)m;

n=0,1,..max — 1, (3.1)
where the integer n is the resonance order and 7n., is
the maximum number of allowed resonances inside the
effective well. The turning point 7o assumes the values
o = Tint = A/(Nk) in the case of Mie-like resonances
(y < A) and r9 = a for Fabry-Pérot-like resonances
(y > A) [see Figs. 1(a) and (b)]. For a given A and p, the
resonance positions are labeled by polarization j and or-
der n as 8 —f,;(A, p), or in a more compact notation by
the symbol j,’}_l/ ?. In this semiclassical approximation
the resonance width w,; is proportional to the barrier
penetration factor,

Text
Wnpj X eXp {—2/ dr
b

The external turning point is 7., = A/k [see Figs. 1(a)
and (b)]. Equation (3.2) shows that for high A angu-
lar momentum values, the resonances can be extremely
sharp. For resonances values in the A transition region
(¥ ~ A) the Bohr-Sommerfeld quantization rule does not
hold. In this case, we need to develop another approx-
imation method to calculate the AK resonances. The
localization principle [4,6] relates the resonances to an
incident ray that tunnels through the barrier. These par-
ticular rays have angular momentum A greater than the
resonance position #. Applying this fact and the sharp
resonance limit to Eq. (1.1), we can obtain more suit-
able formulas to the resonance position 8 and width w,
namely,

(A/r)? — kgj] . (3.2

B [AK] = B,;[Mie] + AB,;[Mie] + O(A™%/3), (3.3)
-1 :
Wpj R {l[f’xg_(ﬁ]) —In"x¢(B)
—N[Si(a) + —ﬁsgy)]} Yz, (3.4)
where Y; = [x2(8)x}(8)]"* and
si) =) 0L - v N p (35)

The right-hand side of Eq. (3.3) is calculated at Mie res-
onance values. This equation allows us to approximate
any AK resonance by an equivalent Mie resonance plus a
remainder term AS. In this approximation this remain-
der term is written as

AB = —TE{N(l — &)y (a)?

NG (3.6)
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148.0

147.5

N=1.45,/¢=154 '

——— AK-Resonance Positions (Exact )

FIG. 2. AK resonance po-
sitions (for. E and M polar-
ization) as the layer thickness
varies, for N = 1.45 (silica)
and resonant multipole £ = 154.
The full line is the exact numer-
ical calculation obtained solv-
ing Eq. (1.1) and the dashed
line is the result of applying
Eq. (3.3). Note that the accu-
racy of Eq. (3.3) decreases for
p < N. In this region, the

147.0

resonances are in the A transi-
tion region and some interest-

146.5 1 1 |A” | L 1 1 1 2

ing resonance behaviors begin
to appear. For instance, the
resonances E and M present a
crossover position and the reso-

1.30

Here, ¢; = (ej_1 —1),d; = N — (Ne;j)™!, and the
function 7] assumes the values T} = t¢(v)/xe(v) and
T? = —¢y(v)/xe (7). The advantage of applying Eq. (3.3)
to calculate the AK resonance is to reduce it to the Mie
resonance calculation. On the other hand, Mie resonance
calculations need accuracy greater than their width. To
supply this numerical requirement we use an algorithm
that is based on uniform asymptotic expansion to Bessel
functions [19], so that we can apply Eq. (3.3) for any p
value as an initial guess to Eq. (1.1) in some exact nu-
merical AK resonance calculation method. The accuracy
of Eq. (3.3) is shown in Fig. 2 for two AK resonances.

nance related to E polarization
has a minimum value.

1.60

IV. RESULTS AND AK RESONANCES SPECIAL
FEATURES

Using the above numerical procedure we calculated for
N = 1.33 the transition from all the Mie-like resonances
(¥ < A) in the range 58.2 < 8 < 59 to the Fabry-Pérot-
like resonances (y & A). These results are shown in Fig.
3. It is interesting to observe the peculiar behavior of the
AK resonances as compared to Mie resonances. In this
context, Mie resonances are the asymptotic limit p > N
of the AK resonances. Figures 2 and 3 show that the rela-
tive separations between the AK resonances are strongly

Resonance Position

60.00

FIG. 3. AK resonance po-
sitions for N = 1.33 (water)
(for E and M polarization) as
p varies. Observe the tran-
sition from the all Mie like

59.25

resonances (y < A) in the
range 58.2 < B < 59 to
the Fabry-Pérot-like resonances

(v = A). Notice that for p
close to N (see vertical dashed

58.50

71
EO

57.75 4

and dotted line p = 1.33) some
resonances present a crossover
position and the resonances re-
lated to E polarization has a
minimum value, which occurs
for layer thicknesses in which
v is close to A; more precisely,

vy A+ 03,
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FIG. 4. Extinction efficiency
factor Qeot for N = 1.33 (wa-
ter) as a function of the size
parameter 8 in the case of
the three different layer thick-
nesses. Note that for p = p, the
resonances M{° and E¢® have a
crossover position. In this situ-
ation, their related peaks on the
Qezt curve are superimposed.
Observe that slow p variations
imply significant changes in the
Qezt CUrve.

modified as p varies. More precisely, we can observe
the following particular features of the AK resonances.
It is interesting to note that several resonances have a
crossover position and the resonances related to E po-
larization have a minimum value as the layer thickness
decreases. For resonances where the width values are
similar, the resonance crossovers have great importance
in the scattering features. On the other hand, the AK
resonant spectrum is very similar to the strong polarized
electronic diatomic molecular spectrum [22,23]. It is not
a coincidence, but it is related to the similarity between
the electromagnetic wave equation and Schrodinger equa-
tion. In both wave equations, tunneling and boundary
conditions play a fundamental role in the spectrum be-
havior. In other words, the resonant E multipoles behave
as bonding molecular orbitals and the resonant M multi-
poles as antibonding molecular orbitals. In the case of a
dielectric core with refractive index N,y having a real
part Re{Ncor.} greater than the layer refractive index IV,
the effective potential U.¢¢ is a double well potential that
resembles a model of polarized diatomic molecular poten-
tial [22,23]. For strong core absorption (Im{N¢ore} > 1),
the two wells do not have correlation. In this limit Uesy
is equivalent to strong polarized diatomic molecular po-
tential. Applying Debye and Schobe asymptotic formulas
to cylindrical Bessel functions [24], we obtained approx-
imate formulas to crossover point p, and minimum FE-
resonance point p.i,. For resonances related to a given
A and n these formulas are, respectively,

ps ~ N/M [tan_l(M) + (n+5/12)(7/A)

+p(0.795/3)] (1+p/3%) 7, (a1)
Prmin ~ N/M [tg—l(M) ¥ (n+1/12)(/N)
+N(0.918)/(MA1/3)] , (4.2)

where M = /N2 — 1 and p = 0.422 — /0.178 + 1.11M.
These size effects change the scattering efficiency fac-
tors [25,26]. Figure 4 shows the extinction efficiency fac-
tor Qext(B) for some layer thickness values. In the size
parameter [(-plane, the sharp peaks that appear in the
Qezt(B) figure are centered at some resonance value [17].
In the case of Fig. 4, the crossover between the reso-
nances E% and MP® can be seen as the superposition
of two resonance peaks. Notice that the slow p varia-
tion makes significant changes in the Q..: curve, so that
resonant and nonresonant contributions to Q.,: are very
sensitive to p variation.

V. CONCLUSIONS

Now we summarize some possible applications of the
present work’s results. For the case of the liquid droplet
layer, we can apply the AK resonances calculations
[Eq. (3.3)] to study the evaporation effects [see Figs. 2
and 3] in high precision particle size and geometry charac-
terization experiments [25]. The resonant Mie scattering
has been applied for the generation of several nonlinear
optics [1-3] and cavity QED in visible [27] experiments.
For experimental observation of these effects, we think
that resonant AK scattering is more efficient than the
resonant Mie scattering. This conclusion is based on the
fact that in the resonant AK scattering, the near and
internal light intensity can be greater than in the equiva-
lent Mie scattering situation. More precisely, during AK
resonances crossover [Eq. (4.1)], the internal and near
electromagnetic field strength is at least twice that of the
equivalent E or M polarization resonant Mie electromag-
netic field strength. Besides, the AK resonance for E po-
larization at point of minimum p.,;» [Eq. (4.2)] is sharper
than an equivalent Mie resonance. On the other hand,
the internal maximum resonant field intensity values are
related to the inverse resonance width [6]. Then for E
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polarization and the layer thickness equal to (pmin — 1)a,
the resonant a AK scattering provides stronger fields than
an equivalent Mie scattering. To finalize, based on the
similarity between AK resonant spectrum and an elec-
tronic diatomic molecular spectrum (see Figs. 2 and 3),
we think that in analogy with photonic band gap theory
[28], a multilayered dielectric sphere can behave as a dis-
ordered optical system. For a large number of the layers,
the optical effective potential becomes very similar to the
electronic effective semiconductor potential. This multi-
layered system should exhibit strong photon localization
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[29] . Work on these issues is in progress, and we plan to
present it in the near future.
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